Somaiya Vidyavihar University

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U06O624	DIY Electronics with Raspberry Pi							
	TH			P		TUT		Total
Teaching Scheme (Hrs.)	3							3
Credits Assigned	2							2
	Marks							
Examination Sahama	CA		ECE			D		
Examination Scheme	ISE	IA	ESE	1 W	Ο	P	ræO	I otal
	30	20						50

Course prerequisites:

Elements of Electrical and Electronics Engineering (2UHC107)

Course Objectives:

This course aims at developing students' ability to build hands-on things without having special electronics skills such as soldering. There are many do it yourself (DIY) platforms available and students taking this subject will able to learn and use these kits and make the most out of it. The course focuses on currently trending advance boards such as Raspberry Pi and at the end of course Student is expected to make project using any one DIY technology. This course will help students in making their projects.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO 1. Understand details of Raspberry pi hardware technology
- CO 2. Use Python programming with Raspberry Pi
- CO 3. Controlling GPIO pins with Python code.
- CO 4. Interfacing various sensors and actuators with Raspberry Pi.
- CO 5. Gain basic knowledge on different DIY boards

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	duction to Raspberry Pi	10	CO1
	1.1	Raspberry Pi hardware, GPIOs, CPU, Ports, Memory,		
		Communication ports, Comparison of different Raspberry		
		Pi versions.		
	1.2	Introduction to different operating systems on Raspberry		
		pi, Raspbian OS.		
2	Pytho	n programming with Raspberry Pi	10	CO2
	2.1	Python versions and shells for Raspberry Pi. Introduction to Thonny		
		Python editor.		
	2.2	Strings, lists, arrays, and dictionaries.	1	
	2.3	Using loops and conditionals like for loops, while loops, if-else		
		statements, if-elif statements. Creating user-defined functions and		
		classes.		
3	Intera	acting with Raspberry Pi	10	CO3
	3.1	Installing different python libraries for Raspberry Pi.		
	3.2	Setting up the GPIO pins and controlling them using Python code.	1	
SVU2020-	R1.0	TY B. Tech ETRX AC / /2021	Page	10 of

Somaiya Vidyavihar University

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

		Accessing the GPIO pins, single LED output, PWM outputs, multiple outputs, basic switch. Setting up the serial port.		
4	Gettir	ng started with Raspberry Pi	10	CO4
	4.1	Interfacing ultrasonic sensor, IR sensor, temperature sensor, and pH sensor with Raspberry Pi and processing their inputs and outputs using Python code.		
	4.2	Peripheral interface Raspberry Pi: USB camera, Capacitive LCD with touchscreen, Pi Camera.		
	4.3	Interfacing various actuators with Raspberry Pi and controlling them using Python code.		
5	Recen	t trends in do-it-yourself (DIY) technology	05	CO5
	4.1	Linux-based DIY boards.		
	4.2	Windows-based DIY boards.		
	4.3	Comparison of different DIY boards.		
	4.4	Tinkering lab DIY with SOC, HDL, FPGA.		
	4.5	DIY used in electrical vehicles (EVs) and IC engine cars.		
		Total	45	

Practical and oral examination will be based on laboratory work and entire syllabus.

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Warren Gay	Raspberry Pi Hardware reference	Apress, USA	Year 2014
1.	Simon Monk	Raspberry Pi cookbook	O'Reilly Media, USA	Year 2016
1.	Liz Clark	Practical Tinker Board	Apress, USA	Year 2018
1.	Dan Nixon	Getting Started with Python and Raspberry Pi	Packt Publishing Ltd	First Edition, 2015
2.	Wolfram Donat	Learn Raspberry Pi Programming with Python: Learn to Program on the World's Most Popular Tiny Computer	Apress	Second Edition, 2018

Recommended Books: